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We consider a structure obtained from a sheet or bar of a unidirectional material by 
making a number of cuts in it. We use the shear model of [i], which has been widely used for 
the description of filamentary materials [1-3]. The region of applicability of the model is 
discussed in detail in [2], and Zweben [4] gives data supporting the good quantitative agree- 
ment of the results of calculations based on this model with experimental results. In the 
present paper we propose an effective method for numerical calculation of the stress--strain 
state of a structure made of a material containing a large number of filaments. 

We assume [I] that in the material the filaments with Young's modulus E are effective 
only in tension, and the binder with shear modulus G is effective only in shear. Suppose 
that i is the number of the filament, i ffi i, ..., M; M, total number of filaments; wi, dis- 
placement of filament i along the axis of alignment of the filaments; t, coordinate along 
this same axis; D and d, thickness of the filaments and the distance between them; Eo, Young's 
modulus of the filament material (E = EoD). The equilibrium equations have the form 

E w~ + (G/d) (w~_ 1 - -  2w~ -+- w~+O = ~ ( 1 )  

if the filament is surrounded by the binder on both sides. If between filament io and fila- 
ment io + i, when tl~t~t~ , there is no binder, then on the left side of (i), for the in- 
dicated values of t, we must omit the terms (G/D) (-wio + Wio+1) from equations io and io+l. 

We assume that at infinity there is a stress o applied to the filaments. Subtracting 
the function a t from the solution, we obtain (preserving the notation mentioned earlier) the 
conditions: ~ + 0 as t] + ~, E wiz (t Z) ffi -o, Z ffi i, o.., L, where L is the number of 

cuts in the filaments| {(iz, tZ) , Z = i, ..., L} are the coordinates of these cuts. 

It should be noted that a structure of any shape can be obtained by making the appropri- 
ate system of cuts in the filaments {(i~, tZ) , Z = i, ..., L} and in the binder {(im, [t,m , 
t2m]), m = i, . . . .  , N}. 

After passing to dimensionless coordinates [3], we obtain the problem 

N 

ui = ~*,~ = Y, 6u,,.z7 (t); (2)  
'Ft t= 1 

t 

u q ( t z ) = - - l ,  l = |  . . . .  ,L ;  

~'(t) -+:0, Iq--* ~ .  

H e r e  x i m ( t )  = 1 o r - - i  i f  i = f ~  o r  i = i m + 1 ,  and  t~,.~< t ~ t 2 , . .  

ui + t -- ui| Aui = ui-, -- 2ui "I" ui+,. 

For a solution of the problem (2)-(4) by ordinary methods, we can obtain the representa- 
tion: 

(3)  

(4)  

•  = 0 ,  o t h e r w i s e ;  6u i = 

N t2m L 

T,.(t) = E j" ~-" (t - ~) 6 . , .d~  + E a .u  ~ (t), 
" m . ~ l  t 1 rt.t, h : l  

(5) 

where ~k(t) is a function yielding the displacement as a result of the breaking for i = ik, 
t = tk of a single filament; this function was constructed in [3]. The function Gm(t) is the 
solution of the equation 
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v m " +  AG~ n = di (t), (6) 

where dim(t ) = ~(0), dim+x(t) = --~(0), di(t) = 0 for i # im, i m + i, with the condition (4). 

Function Gm(t) describes the displacement due to a shear force couple. For numerical calcu- 
lations it is important that uk(t) and ~m(t) can be constructed analytically. This enables 
us to avoid calculations equivalent to solving a mixed boundary-value problem for a system 
of M ordinary differential equations. 

Let us construct the function Gm(t). We seek a solution of (6) by analogy with [3] in 
the form 

( ' )  m :~k t---~- 
G~'(t) = X ( - - i )  hC+sin ' e -xkt, t > O ,  M 

h = l  

Gr (t) = X (-- i)~C~- sin M e tu', t <  O, 
k = l  

~,h = cos (ak/2M). 

For t # O, the function Gm(t) satisfies Eqs. (6) and 
have the splicing condition: 

G? ( +  O) = G? (--  0); 

G?' ( +  O) = G?' (--  0), ~ =/= ~,., ~,,, + ~; 
G FlIt ~ 71tt G~m ('-}- O) - -  G~,~ (- -  0 ) t, i,~+l ( +  O) Gim+, (--  O) 

We cite a formula from [3] : 

X q~ sin M M 
k = l  

q~, = t, k < M, qM = t/2. 

+ 
From (7), making use of (i0), we obtain C i 

t h e  condition (4) [3]. For t = 0 we 

M ~ i  o 

--:-- |. 

= C7o Then from (8) we have the equation 
l 

(7) 

(S) 

(9) 

(i0) 

i~hC~ sin ' M = O, i 4= i=~ i ~  + t ,  
h = l  

and solving this for XkCk +, we obtain on the basis of (I0) 

)~t,C + = q~ p sin M + q sin M ' 
( i i )  

VP, q~R. Since % M ffi 0, it follows that coefficient CM + describing the displacement of the 
structure as a rigid body is indeterminate, and for solvability of (ii), its right side must 
vanish when k = M, and hence p = q. Substituting the resulting expression for XkCk + into (9) 
we have pM = (--l)im +I, from which we finally find that 

M ak (i -- t \ 
- - N - -  " (12) 

In an analogous manner, we can construct ~k(t) and ~m(t) for the three-dimensional case. The 
function uk(t) for this case was given in [5]. The function ~(t), describing a couple ap- 
plied to filaments (io, jo) and (io, jo + i), has the form 

Gi) ( t )=  Z (--t)i~176 2 sin s i n - - ~ 2  e , M1M~ q~qm sin M1 M~. ~ 
(13) 

262 



TABLE i 

' i0 

21,181 

i4 

i 0  

12 12012.1200 i , i 8  i ,33 i ,42 i ,45 

t,5t t,g0 t,7t I t,7~ 

where M,, M2 are the numbers of filaments in the first and second direction; ~m----i,/~': '' 

In what follows, for the sake of simplicity, we shall consider the three-dimensional case a 
o n e - d i m e n t i o n a l  b a r ,  i . e . ,  a l a y e r :  M, = 1,  M2 = M. A l l  t h e  r e s u l t s  can  be  c a r r i e d  o v e r  t o  
the three dimensional case by simply replacing the influence functions for a layer by the 

influence functions for a bar. 

Thus, the kernels ~m(t) and ~k(t) in (5) are known, and we can obtain equations for 
{~Uim , ~k }. In the cracks, applying the operator 6 to (5), we have 

N L 

6u,~m = ~ .I 8G~m6u~ ~ Jr ~ ~kSU~m" (14) 
n--! h = l  

The s e c ond  group o f  e q u a t i o n s  i s  o b t a i n e d  from t h e  c o n d i t i o n s  a l o n g  t h e  c u t s  i n  t h e  f i l a m e n t s :  

:~," L 
' 7~r 

Equations (14) and (15) can be rewritten as an equation of the second kind; 

N L 

n=x" h=1 (16) 
N L 

-- -- -- ~h t t§ ~ I  

n = l  h = l  

The operator on the right side of (16), R:L~ •215 R L , is compact, since 6G TM, ~m!~ 
C(R). Then, according to the Fredholm alternative, Eqs. (16) are sol~able, since the solu- 
tion is unique. After solving (16), we can reconstruct the function U(t) everywhere in ac- 

-- L N cordance with (5). From (5) it follows that u ~ C* (R) (except at the points {tk)k=iU {tin}n=1 
N U {t~.}.=0. 
The s o l u t i o n  o f  s y s t e m  ( 1 4 ) ,  (15) was c a r r i e d  o u t  n u m e r i c a l l y  as  f o l l o w s ~  t h e  i n t e g r a l  

part of the system (14), (15) was discretized with a step T, after which we obtained a system 

N 

of algebraic equations of dimension {P q- L)• + L). where P = ~ (t~m-- t*m)/T q-N is the num- 

ber of nodes in the discretization and L is the number of cuts in the filaments. The solu- 
tion was carried out on the BESM-6 computer. The program is the same for an arbitrary num- 
ber of cuts. Let us illustrate the application of the proposed method by showing the results 
of the calculations for two types of problems. 

We shall give the results of calculations for a cutout of rectangular shape. In this 
problem we selected an acceptable discretization step T. It was found that the step may be 
taken from the interval [0.2-0,05] (dimensionless variables). If the step in this interval 
was halved, the corresponding solutions differed by no more than 1-0.5%. 

We found that the concentration of stresses and the shear deformations are localized in 
a region of the order of 2-3max(~/EodO/G,'~),where ~is the characteristic dimension of the 
cutout. In this region the stress concentrations may considerably (200% or more) exceed the 
average overload on the filaments, Kay = M/(M -- L/2), where M is the total number of fila- 
ments in the structure and L is the number of cut filaments. An analogous result was found 
for other shapes of cutouts (circles, triangular notches). The presence of the quantity 
]/EodD/G , corresponding to the dimensionless unit of length, in the formula determining the 
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TABLE 2 

0,t 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 t m 

2,67 2,66 2,66 2,~ 2,72 2,89 2,89 2,99 3,11 3,27 1,005 0,6 7 

0,8 7 

t 7 

K4 

K5 

1,5 7 

2 T 

K4 

K5 

3 u 

5 u 

2,26 2,25 

t,97 t,92 

1,75 1,64 

1,76 1,71 

1,52 1,42 

t,26 t,t3 

1,04 1,79 

1,97 1,92 

0,96 0,78 

0,67 0,47 

2,22 

1,89 

t,5t 

t ,65 

2,23 

t ,87 

1,36 

1,6t 

2,25 

t,89 

1,19 

1,56 

2,3t -- 

1,93 2,00 

t,00 0,80 

t,52 t,48 

- -  _ _  q 

2,tl 2,27 { 2,50 

I o,56 o,3o i o,oo 

t,51 t,69 1,69 

1,0t5 

t ,05 

t,35 1,31 t,30 1,33 1,39 t,t7 

t ,32 1,03 

1,61 

1'89 

0,67 

0,96 

t.,22 

1,85 

0,58 

0,28 0,35 

0,98 1,04 

1,02 0,8t 

1,84 1,83 

o,29 [o,34 

0,98 

1,42 

t,87 

0,60 

1,16 t,35 

0,59 O,33 

t,8t 1,79 

0,45 0,66 

1,66 

o,oo 

t,76 

0,30 

�9 t ,60 

�9 " 1 2,39 

dimensions of the area of localization of the disturbance constitutes one of the features of 
the behavior of the composite material in question which were clearly determined in the pro- 
cess of numerical calculation. 

Table i gives the values of the maximum coefficient of stress concentration (in the up- 
per part of the cell) and shear concentration (in the lower part of the cell) for a rectangu- 
lar cutout. In the calculations the total number of filaments was M = 50; the length I of 
the cutout and the width L/2 (in the filaments) are shown in Table i. The maximum stress and 
shear concentrations in all the calculated cases were found in the filament adjacent to the 
edge of the cutout for t = • (the corners of the rectangular cutout). 

Let us consider the strength of this structure. For this we revert to the dimensional 
coordinate z and the displacement ~: 

z = (EodD/G)l/St ,  w = (da~ /EoGD)1 /~ .  

Suppose that we are given the condition that the filaments and the binder will fail at 
the stresses| Eow i' = o*, G w i = T*. Then the tensile load o at which the failure of the 
filament (of) or the binder (Ob) begins will be equal, respectively, to 

o f  = D o * / e ,  fib = (E~ (17) 

Suppose t h a t  we a r e  g i v e n  t h e  c o n d i t i o n  t h a t  f a i l u r e  o c c u r s  a t  t he  d e f o r m a t i o n s :  w i '  = 
r 6w i = y*. Then 

af =Ds*/EOe' Ob =(E~ (18) 

(e and y are the maximum stress concentration and the maximum d~mensionless shear (from Ta- 
ble I))o 

As can be seen from (17) and (18), of is not explicitly dependent in either case on the 
characteristics G and d of the binder. It is true that these quantities appear indirectly 
in (17) and (18), determining the dimensionless length of the cutout, but the dependence of 
e and y on this length is rather weak, and, as can be shown, it decreases at an exponential 
rate as the dimensionless length increases. From the second formulas in (17) and (18) it fol- 
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lows that a decrease in the quantity d/D leads to an increase in the "shearing" strength of 
the structure (subject to the same conditions concerning the length of the cutout). 

For a cutout of small width, 2~, we can obtain a solution by a different method. We 
write system (16) in the form 

.,r j. L U k (19 )  
j=i k=i 

L N 

E =- Z J C ,ji - (20) 
h = l  J = l  

The norm of the integral operator in (19) is less than unity [6], and therefore 

7 = al~ ~O~ e"Rn6Uh, " (21) 

N 

where R:.7~C(R)-+ ~ j_~ 

L 

Substituting (21) into (20), taking account of the fact that ~ ah6U~(0)=0, because of the 
4=1 

symmetry of the cutout, we find that ~(0) = 0. Then, by (20), 

L 
h' ~.  ~hU~t (tz)---- - -  t q-O(e2).  ( 22 )  

This formula describes (to within c2) two series of cuts in the filaments spaced at distances 
of 2e. For this problem we can easily obtain an approximate solution. Taking account of the 
symmetry of the cutout, a k = ~k+L/2, L is the total number of cuts in the filaments. The 
function ~k(t) has the form [3] 

M 

U~ (t) = ~,, A~l [-- e~'l('-~) q - e -z'(t+~)] j,J 

where the coefficients A~Z are given in [3]. We expand the exponents in a series and substi- 
tute the resulting expressions into (22). Taking account of the equilibrium equations and 
the fact that uik(0 ) = 0 when k~/=i, we find 

L/2 F M 1 

A~z~.t - -  ~U~ (0) = - -  - f -  + 0 (~ ) .  (23 )  

Then, denoting by 0o the solution of a problem of the form (22) for one series of filaments, k 
we have from (23) 

where 
M h - - !  

o4 = = 'z  ~176 + ~ .,..iU~ (0) o ~ + 0 (~D, 

After this the solution is determined from the formula 

L/2 
~-~' (t) = '~  o , U " '  (t) q- 0 (e2). (24)  

h = l  

It follows from the numerical calculations that: 
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Fig. i 

I) the quantities Ukk(O) are practically independent of k (their oscillations do not ex- 
ceed 1%), and we can take Ukk(0) = 0.25; 

2) for the matrices Aiz%l = (bi~) we have bhk~,_O, OB, bk+1,~b~,k+,~.~0.20 , and there 

is further attenuation as we move away from the main diagonal. Taking (bik) ~--0.63E, we ob- 
tain form (24) an approximate formula for calculating the stress concentration at the edge of 
a thin rectangular cutout 

K ( t )  ~-, K o  - -  0,4e(Ko - -  t ) ,  (25)  

where K a > i is the coefficient of concentration of the stresses which arise when we cut one 
series of L/2 filaments. As can be seen, the stresses at the edge of the cutout are inde- 
pendent of t (to within ~2) and decrease as the width of the cutout increases. The numerical 
calculation confirms that the stresses at the edge of the cutout are independent of t for 
small values of mo From the results of the calculations we can recommend formula (25) for 
use in the interval e~.i/2 (in dimensionless variables)~ 

A second problem solved by means of the indicated program was the problem of the propaga- 
tion of a shear crack between two series of filament breaks spaced at a distance of S (see 
Fig. I). In the case of one series of breaks, the problem was considered in [7], which re- 
vealed the stable nature of the propagation of the crack, i.e., ~ defined by the second 
equations in (17) and (18), increases with increasing crack length Z (and vice versa). 

Table 2 shows the values of 6ui(Z) = y, y = ~* (to within the constant factors in (17) 
and (18)). In the calculations the total number of filaments is M = 50. The data in Table 
2 are given for the case of L/2 = 5 breaks in each series. In both cases we give: the co- 
efficient of stress concentration at the end of the crack (in the filament adjacent to the 
crack on the left, K4) and at the beginning of the crack (in the filament adjacent to the 
crack on the right, K5). 

As can be seen from Table 2 and the second equations in (17) and (18), in this case the 
stable development of the crack takes place only up to a certain crack length Z*, which, ac- 
cording to calculations, may be estimated at Z* = (0.3-0.5)S. After the crack reaches this 
length, its further growth does not require any increase of the load at infinity. If for a 
given load ~ < a b ~ o* the length of the crack Z(o) < Z*, then the ratio o*/o, where ~* : 
(~*) = ~*, yields the relative value of the additional load required for a jump of the crack 

to the second series of filament breaks. For a smaller load, the crack is in a stable stage 
and there is no jump. We introduce the number m = o*/o(0) = y(0)/y*, where y* corresponds to 
~*, Z*; ~(0), y(0) correspond to a crack of "zero" length (y(0) is taken from the first column 
of Table 2). It can be seen from Table 2 that o*/o ~ m and the number m is the maximum possi- 
ble margin of relative additional load (hereinafter called simply the additional load). As 
can be seen, for S 41 (in dimensionless variables the quantity corresponding to unity is 
]/EodD/G ) the value m of the additional load is close to unity. This means that the crack 
in the binder between series of breaks which are relatively close to each other (S~I) can 
in practice have only two states: either a fully developed crack (a jump to the second series 
of breaks) or complete absence of a crack. In the case of longer cracks the additional load 
becomes markedly greater than unity, and the shear crack, as can be seen from the indicated 
values of K4 and KS, retards the failure of the filaments. The possible additional load on 
the structure in the general ease must be determined with due regard to the strength of the 
filaments as well. 
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The crack behaved similarly for different numbers of broken filaments: L/2 = i0, L/2 = 
15. In these cases too, we had stable development of the crack only so long as its length 
did not exceed (0.3-0.5)S. As the number of broken filaments increased, the additional load 
decreased slightly: for S = i, we had m = 1.05 when L/2 = 5, m = 1.03 when L/2 = I0, and m = 
1.025 when L/2 = 15; for S = 2, the values of m were 1.32, 1.26, and 1.24, respectively. The 
above-described manner of propagation of a shear crack is, of course, only one of the possi- 
ble ways of propagation of cracks in a unidirectional material. In specific cases we must 
consider all possible variants of failure. The program described above enables us to carry 
out such calculations within an acceptable time. 

The author is grateful to B. D. Annin for his formulation of the problem and his valu- 
able comments. 
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